a
    Re"*                     @   s   d Z ddlZddlZddlZddlZddlmZm	Z	m
Z
mZmZ ddlmZ ddlmZ g Zdd ZG d	d
 d
ZdddZdS )zTrust-region optimization.    N   )_check_unknown_options_status_messageOptimizeResult_prepare_scalar_function_call_callback_maybe_halt)HessianUpdateStrategy)
FD_METHODSc                    s.   dgd u rd fS  fdd}|fS )Nr   c                    s*   d  d7  < t | g|  R  S )Nr   r   )npcopy)xZwrapper_argsargsfunctionZncalls O/var/www/sunrise/env/lib/python3.9/site-packages/scipy/optimize/_trustregion.pyfunction_wrapper   s    z(_wrap_function.<locals>.function_wrapperr   )r   r   r   r   r   r   _wrap_function   s
    r   c                   @   sj   e Zd ZdZdddZdd Zedd Zed	d
 Zedd Z	dd Z
edd Zdd Zdd ZdS )BaseQuadraticSubproblemaQ  
    Base/abstract class defining the quadratic model for trust-region
    minimization. Child classes must implement the ``solve`` method.

    Values of the objective function, Jacobian and Hessian (if provided) at
    the current iterate ``x`` are evaluated on demand and then stored as
    attributes ``fun``, ``jac``, ``hess``.
    Nc                 C   sF   || _ d | _d | _d | _d | _d | _d | _|| _|| _|| _	|| _
d S N)_x_f_g_h_g_magZ_cauchy_pointZ_newton_point_fun_jac_hess_hessp)selfr   funjachesshesspr   r   r   __init__(   s    z BaseQuadraticSubproblem.__init__c                 C   s*   | j t| j| dt|| |  S )Ng      ?)r    r
   dotr!   r#   r   pr   r   r   __call__5   s    z BaseQuadraticSubproblem.__call__c                 C   s   | j du r| | j| _ | j S )z1Value of objective function at current iteration.N)r   r   r   r   r   r   r   r    8   s    
zBaseQuadraticSubproblem.func                 C   s   | j du r| | j| _ | j S )z=Value of Jacobian of objective function at current iteration.N)r   r   r   r)   r   r   r   r!   ?   s    
zBaseQuadraticSubproblem.jacc                 C   s   | j du r| | j| _ | j S )z<Value of Hessian of objective function at current iteration.N)r   r   r   r)   r   r   r   r"   F   s    
zBaseQuadraticSubproblem.hessc                 C   s*   | j d ur|  | j|S t| j|S d S r   )r   r   r
   r%   r"   r&   r   r   r   r#   M   s    
zBaseQuadraticSubproblem.hesspc                 C   s    | j du rtj| j| _ | j S )zAMagnitude of jacobian of objective function at current iteration.N)r   scipylinalgZnormr!   r)   r   r   r   jac_magS   s    
zBaseQuadraticSubproblem.jac_magc                 C   s   t ||}dt || }t |||d  }t|| d| |  }|t|| }| d|  }	d| | }
t|	|
gS )z
        Solve the scalar quadratic equation ||z + t d|| == trust_radius.
        This is like a line-sphere intersection.
        Return the two values of t, sorted from low to high.
              )r
   r%   mathsqrtcopysignsorted)r   zdtrust_radiusabcZsqrt_discriminantZauxtatbr   r   r   get_boundaries_intersectionsZ   s    	z4BaseQuadraticSubproblem.get_boundaries_intersectionsc                 C   s   t dd S )Nz9The solve method should be implemented by the child class)NotImplementedError)r   r6   r   r   r   solveq   s    zBaseQuadraticSubproblem.solve)NN)__name__
__module____qualname____doc__r$   r(   propertyr    r!   r"   r#   r,   r<   r>   r   r   r   r   r      s   	




r   r         ?     @@333333?-C6?FTc           #         sx  t | |du rtd|du r0|du r0td|du r@tdd|	  krTdk s^n td|dkrntd|dkr~td	||krtd
t| }t| ||||d  j}  j}t	|rʈ j
}n6t	|rn,|tv st|trd} fdd}ntdt||\}}|du r$t|d }d}|}|}|r<|g}||| |||}d}|j|
krz||\}}W n" tjjy   d}Y qY n0 ||}|| }||| |||}|j|j }|j| }|dkrd}q|| }|dk r|d9 }n|dkr|rtd| |}||	kr&|}|}|r<|t| |d7 }t||jd} t|| rbq|j|
k rvd}q||krPd}qqPtd td ddf}!|r|dkrt|!|  nt|!| td td|j  td|  td j  td j  td j |d    t||dk||j|j! j j j |d  ||!| d
}"|durf|j
|"d< |rt||"d< |"S ) a  
    Minimization of scalar function of one or more variables using a
    trust-region algorithm.

    Options for the trust-region algorithm are:
        initial_trust_radius : float
            Initial trust radius.
        max_trust_radius : float
            Never propose steps that are longer than this value.
        eta : float
            Trust region related acceptance stringency for proposed steps.
        gtol : float
            Gradient norm must be less than `gtol`
            before successful termination.
        maxiter : int
            Maximum number of iterations to perform.
        disp : bool
            If True, print convergence message.
        inexact : bool
            Accuracy to solve subproblems. If True requires less nonlinear
            iterations, but more vector products. Only effective for method
            trust-krylov.

    This function is called by the `minimize` function.
    It is not supposed to be called directly.
    Nz7Jacobian is currently required for trust-region methodsz_Either the Hessian or the Hessian-vector product is currently required for trust-region methodszBA subproblem solving strategy is required for trust-region methodsr   g      ?zinvalid acceptance stringencyz%the max trust radius must be positivez)the initial trust radius must be positivez?the initial trust radius must be less than the max trust radius)r!   r"   r   c                    s     | |S r   )r"   r%   )r   r'   r   Zsfr   r   r#      s    z%_minimize_trust_region.<locals>.hessp      r-   g      ?r   )r   r    successmaxiterz:A bad approximation caused failure to predict improvement.z3A linalg error occurred, such as a non-psd Hessian.z#         Current function value: %fz         Iterations: %dz!         Function evaluations: %dz!         Gradient evaluations: %dz          Hessian evaluations: %d)
r   rK   statusr    r!   nfevZnjevnhevZnitmessager"   allvecs)"r   
ValueError	Exceptionr
   Zasarrayflattenr   r    Zgradcallabler"   r	   
isinstancer   r   lenr,   r>   r+   ZLinAlgErrorminappendr   r   r   r   printwarningswarnRuntimeWarningrN   ZngevrO   r!   )#r    Zx0r   r!   r"   r#   Z
subproblemZinitial_trust_radiusZmax_trust_radiusetaZgtolrL   ZdispZ
return_allcallbackZinexactZunknown_optionsZnhesspZwarnflagr6   r   rQ   mkr'   Zhits_boundaryZpredicted_valueZ
x_proposedZ
m_proposedZactual_reductionZpredicted_reductionrhoZintermediate_resultZstatus_messagesresultr   rH   r   _minimize_trust_regionv   s    









rd   )r   NNNNrD   rE   rF   rG   NFFNT)rB   r0   r[   numpyr
   Zscipy.linalgr*   	_optimizer   r   r   r   r   Z'scipy.optimize._hessian_update_strategyr   Z(scipy.optimize._differentiable_functionsr	   __all__r   r   rd   r   r   r   r   <module>   s    X     