a
    Re                     @  s  d dl mZ d dlmZmZmZmZ d dlZd dl	Z	d dl
Z
d dlmZ d dlmZ d dlmZmZ d dlmZ g dZdddZdddZG dd deZerd dlmZ G dd deZneZdddddZedd Ze e_dddZddd Zdd%d&Z d'd( Z!dd)d*Z"dd+d,Z#d-d. Z$dd/d0Z%dd1d2Z&dd3d4Z'd5d6 Z(d7d8 Z)d9d: Z*dd=d>Z+d$d?d$d$gd
d@fd$dAg dBd
dCfdAdDg dEdFdGfd?dHg dIdJdKfddLg dMdNdOfd$dPg dQdRdSfdTdUg dVdWdXfdYdZg d[d\d]fd^d_g d`dadbfddcg dddedffdgdhg didjdkfd$dlg dmdndofdpdqg drdsdtfdTdug dvdwdxfdyZ,ddzd{Z-d|d} Z.ed~ddgZ/dDddddddZ0dS )    )annotations)TYPE_CHECKINGCallableAnycastN)
namedtuple)roots_legendre)gammaln	logsumexp)
_rng_spawn)
fixed_quad
quadraturerombergromb	trapezoidtrapzsimpssimpsoncumulative_trapezoidcumtrapznewton_cotesqmc_quadAccuracyWarning      ?c                 C  s2   t tdrtj| |||dS tj| |||dS dS )a  
    Integrate along the given axis using the composite trapezoidal rule.

    If `x` is provided, the integration happens in sequence along its
    elements - they are not sorted.

    Integrate `y` (`x`) along each 1d slice on the given axis, compute
    :math:`\int y(x) dx`.
    When `x` is specified, this integrates along the parametric curve,
    computing :math:`\int_t y(t) dt =
    \int_t y(t) \left.\frac{dx}{dt}\right|_{x=x(t)} dt`.

    Parameters
    ----------
    y : array_like
        Input array to integrate.
    x : array_like, optional
        The sample points corresponding to the `y` values. If `x` is None,
        the sample points are assumed to be evenly spaced `dx` apart. The
        default is None.
    dx : scalar, optional
        The spacing between sample points when `x` is None. The default is 1.
    axis : int, optional
        The axis along which to integrate.

    Returns
    -------
    trapezoid : float or ndarray
        Definite integral of `y` = n-dimensional array as approximated along
        a single axis by the trapezoidal rule. If `y` is a 1-dimensional array,
        then the result is a float. If `n` is greater than 1, then the result
        is an `n`-1 dimensional array.

    See Also
    --------
    cumulative_trapezoid, simpson, romb

    Notes
    -----
    Image [2]_ illustrates trapezoidal rule -- y-axis locations of points
    will be taken from `y` array, by default x-axis distances between
    points will be 1.0, alternatively they can be provided with `x` array
    or with `dx` scalar.  Return value will be equal to combined area under
    the red lines.

    References
    ----------
    .. [1] Wikipedia page: https://en.wikipedia.org/wiki/Trapezoidal_rule

    .. [2] Illustration image:
           https://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png

    Examples
    --------
    Use the trapezoidal rule on evenly spaced points:

    >>> import numpy as np
    >>> from scipy import integrate
    >>> integrate.trapezoid([1, 2, 3])
    4.0

    The spacing between sample points can be selected by either the
    ``x`` or ``dx`` arguments:

    >>> integrate.trapezoid([1, 2, 3], x=[4, 6, 8])
    8.0
    >>> integrate.trapezoid([1, 2, 3], dx=2)
    8.0

    Using a decreasing ``x`` corresponds to integrating in reverse:

    >>> integrate.trapezoid([1, 2, 3], x=[8, 6, 4])
    -8.0

    More generally ``x`` is used to integrate along a parametric curve. We can
    estimate the integral :math:`\int_0^1 x^2 = 1/3` using:

    >>> x = np.linspace(0, 1, num=50)
    >>> y = x**2
    >>> integrate.trapezoid(y, x)
    0.33340274885464394

    Or estimate the area of a circle, noting we repeat the sample which closes
    the curve:

    >>> theta = np.linspace(0, 2 * np.pi, num=1000, endpoint=True)
    >>> integrate.trapezoid(np.cos(theta), x=np.sin(theta))
    3.141571941375841

    ``trapezoid`` can be applied along a specified axis to do multiple
    computations in one call:

    >>> a = np.arange(6).reshape(2, 3)
    >>> a
    array([[0, 1, 2],
           [3, 4, 5]])
    >>> integrate.trapezoid(a, axis=0)
    array([1.5, 2.5, 3.5])
    >>> integrate.trapezoid(a, axis=1)
    array([2.,  8.])
    r   xdxaxisN)hasattrnpr   r   yr   r   r    r#   O/var/www/sunrise/env/lib/python3.9/site-packages/scipy/integrate/_quadrature.pyr      s    h
r   c                 C  s   t | |||dS )z}An alias of `trapezoid`.

    `trapz` is kept for backwards compatibility. For new code, prefer
    `trapezoid` instead.
    r   )r   r!   r#   r#   r$   r      s    r   c                   @  s   e Zd ZdS )r   N)__name__
__module____qualname__r#   r#   r#   r$   r      s   r   )Protocolc                   @  s   e Zd ZU ded< dS )CacheAttributeszdict[int, tuple[Any, Any]]cacheN)r%   r&   r'   __annotations__r#   r#   r#   r$   r)      s   
r)   r   )funcreturnc                 C  s
   t t| S N)r   r)   r,   r#   r#   r$   cache_decorator   s    r0   c                 C  s,   | t jv rt j|  S t| t j| < t j|  S )zX
    Cache roots_legendre results to speed up calls of the fixed_quad
    function.
    )_cached_roots_legendrer*   r   )nr#   r#   r$   r1      s    

r1   r#      c                 C  sx   t |\}}t|}t|s*t|r2td|| |d  d | }|| d tj|| |g|R   dd dfS )a  
    Compute a definite integral using fixed-order Gaussian quadrature.

    Integrate `func` from `a` to `b` using Gaussian quadrature of
    order `n`.

    Parameters
    ----------
    func : callable
        A Python function or method to integrate (must accept vector inputs).
        If integrating a vector-valued function, the returned array must have
        shape ``(..., len(x))``.
    a : float
        Lower limit of integration.
    b : float
        Upper limit of integration.
    args : tuple, optional
        Extra arguments to pass to function, if any.
    n : int, optional
        Order of quadrature integration. Default is 5.

    Returns
    -------
    val : float
        Gaussian quadrature approximation to the integral
    none : None
        Statically returned value of None

    See Also
    --------
    quad : adaptive quadrature using QUADPACK
    dblquad : double integrals
    tplquad : triple integrals
    romberg : adaptive Romberg quadrature
    quadrature : adaptive Gaussian quadrature
    romb : integrators for sampled data
    simpson : integrators for sampled data
    cumulative_trapezoid : cumulative integration for sampled data
    ode : ODE integrator
    odeint : ODE integrator

    Examples
    --------
    >>> from scipy import integrate
    >>> import numpy as np
    >>> f = lambda x: x**8
    >>> integrate.fixed_quad(f, 0.0, 1.0, n=4)
    (0.1110884353741496, None)
    >>> integrate.fixed_quad(f, 0.0, 1.0, n=5)
    (0.11111111111111102, None)
    >>> print(1/9.0)  # analytical result
    0.1111111111111111

    >>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=4)
    (0.9999999771971152, None)
    >>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=5)
    (1.000000000039565, None)
    >>> np.sin(np.pi/2)-np.sin(0)  # analytical result
    1.0

    z8Gaussian quadrature is only available for finite limits.          @r   r   N)r1   r    realisinf
ValueErrorsum)r,   abargsr2   r   wr"   r#   r#   r$   r      s    >
r   Fc                   s&   |r fdd}n fdd}|S )ao  Vectorize the call to a function.

    This is an internal utility function used by `romberg` and
    `quadrature` to create a vectorized version of a function.

    If `vec_func` is True, the function `func` is assumed to take vector
    arguments.

    Parameters
    ----------
    func : callable
        User defined function.
    args : tuple, optional
        Extra arguments for the function.
    vec_func : bool, optional
        True if the function func takes vector arguments.

    Returns
    -------
    vfunc : callable
        A function that will take a vector argument and return the
        result.

    c                   s   | g R  S r.   r#   r   r=   r,   r#   r$   vfunc  s    zvectorize1.<locals>.vfuncc                   s   t | r| g R  S t | } | d g R  }t| }t|dt|}t j|f|d}||d< td|D ]}| | g R  ||< qr|S )Nr   dtyperB   r4   )r    isscalarasarraylengetattrtypeemptyrange)r   Zy0r2   rB   outputir@   r#   r$   rA     s    

r#   )r,   r=   vec_funcrA   r#   r@   r$   
vectorize1   s    rN   "\O>2   Tr4   c	                 C  s   t |ts|f}t| ||d}	tj}
tj}t|d |}t||d D ]D}t|	||d|d }t||
 }|}
||k s||t|
 k rF qqFt	
d||f t |
|fS )a  
    Compute a definite integral using fixed-tolerance Gaussian quadrature.

    Integrate `func` from `a` to `b` using Gaussian quadrature
    with absolute tolerance `tol`.

    Parameters
    ----------
    func : function
        A Python function or method to integrate.
    a : float
        Lower limit of integration.
    b : float
        Upper limit of integration.
    args : tuple, optional
        Extra arguments to pass to function.
    tol, rtol : float, optional
        Iteration stops when error between last two iterates is less than
        `tol` OR the relative change is less than `rtol`.
    maxiter : int, optional
        Maximum order of Gaussian quadrature.
    vec_func : bool, optional
        True or False if func handles arrays as arguments (is
        a "vector" function). Default is True.
    miniter : int, optional
        Minimum order of Gaussian quadrature.

    Returns
    -------
    val : float
        Gaussian quadrature approximation (within tolerance) to integral.
    err : float
        Difference between last two estimates of the integral.

    See Also
    --------
    romberg : adaptive Romberg quadrature
    fixed_quad : fixed-order Gaussian quadrature
    quad : adaptive quadrature using QUADPACK
    dblquad : double integrals
    tplquad : triple integrals
    romb : integrator for sampled data
    simpson : integrator for sampled data
    cumulative_trapezoid : cumulative integration for sampled data
    ode : ODE integrator
    odeint : ODE integrator

    Examples
    --------
    >>> from scipy import integrate
    >>> import numpy as np
    >>> f = lambda x: x**8
    >>> integrate.quadrature(f, 0.0, 1.0)
    (0.11111111111111106, 4.163336342344337e-17)
    >>> print(1/9.0)  # analytical result
    0.1111111111111111

    >>> integrate.quadrature(np.cos, 0.0, np.pi/2)
    (0.9999999999999536, 3.9611425250996035e-11)
    >>> np.sin(np.pi/2)-np.sin(0)  # analytical result
    1.0

    rM   r4   r#   r   z-maxiter (%d) exceeded. Latest difference = %e)
isinstancetuplerN   r    infmaxrJ   r   abswarningswarnr   )r,   r;   r<   r=   tolrtolmaxiterrM   ZminiterrA   valerrr2   Znewvalr#   r#   r$   r   #  s"    A

r   c                 C  s   t | }|||< t|S r.   )listrS   )trL   valuelr#   r#   r$   tuplesetx  s    rb   c                 C  s   t | ||||dS )zAn alias of `cumulative_trapezoid`.

    `cumtrapz` is kept for backwards compatibility. For new code, prefer
    `cumulative_trapezoid` instead.
    )r   r   r   initial)r   )r"   r   r   r   rc   r#   r#   r$   r     s    r   c                 C  sZ  t | } |du r|}nt |}|jdkrVt |}dg| j }d||< ||}n,t|jt| jkrttdnt j||d}|j| | j| d krtdt| j}tt	df| |t	dd}tt	df| |t	dd}	t j
|| | | |	   d |d}
|durVt |s$tdt|
j}d||< t jt j|||
jd	|
g|d}
|
S )
a  
    Cumulatively integrate y(x) using the composite trapezoidal rule.

    Parameters
    ----------
    y : array_like
        Values to integrate.
    x : array_like, optional
        The coordinate to integrate along. If None (default), use spacing `dx`
        between consecutive elements in `y`.
    dx : float, optional
        Spacing between elements of `y`. Only used if `x` is None.
    axis : int, optional
        Specifies the axis to cumulate. Default is -1 (last axis).
    initial : scalar, optional
        If given, insert this value at the beginning of the returned result.
        Typically this value should be 0. Default is None, which means no
        value at ``x[0]`` is returned and `res` has one element less than `y`
        along the axis of integration.

    Returns
    -------
    res : ndarray
        The result of cumulative integration of `y` along `axis`.
        If `initial` is None, the shape is such that the axis of integration
        has one less value than `y`. If `initial` is given, the shape is equal
        to that of `y`.

    See Also
    --------
    numpy.cumsum, numpy.cumprod
    quad : adaptive quadrature using QUADPACK
    romberg : adaptive Romberg quadrature
    quadrature : adaptive Gaussian quadrature
    fixed_quad : fixed-order Gaussian quadrature
    dblquad : double integrals
    tplquad : triple integrals
    romb : integrators for sampled data
    ode : ODE integrators
    odeint : ODE integrators

    Examples
    --------
    >>> from scipy import integrate
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt

    >>> x = np.linspace(-2, 2, num=20)
    >>> y = x
    >>> y_int = integrate.cumulative_trapezoid(y, x, initial=0)
    >>> plt.plot(x, y_int, 'ro', x, y[0] + 0.5 * x**2, 'b-')
    >>> plt.show()

    Nr4   r   2If given, shape of x must be 1-D or the same as y.r6   7If given, length of x along axis must be the same as y.r5   z'`initial` parameter should be a scalar.rC   )r    rE   ndimdiffreshaperF   shaper9   rb   sliceZcumsumrD   r^   ZconcatenatefullrB   )r"   r   r   r   rc   dri   ndslice1slice2resr#   r#   r$   r     s6    7





"

r   c              
   C  s  t | j}|d u rd}d}td f| }t||t|||}	t||t|d |d |}
t||t|d |d |}|d u rtj| |	 d| |
   | |  |d}||d 9 }ntj||d}t||t|||}t||t|d |d |}|| jtdd}|| jtdd}|| }|| }tj	||t
||dkd	}|d
 | |	 dtj	d|t
||dkd	  | |
 |tj	||t
||dkd	   | | d|    }tj||d}|S )Nr      r4         @r6         @F)copyoutwhereg      @r5   r   )rF   ri   rj   rb   r    r:   rg   Zastypefloattrue_divide
zeros_like)r"   startstopr   r   r   rm   step	slice_allslice0rn   ro   resulthZsl0Zsl1Zh0h1ZhsumZhprodZh0divh1tmpr#   r#   r$   _basic_simpson  sH    
&
	r   c                 C  s   t | ||||dS )zyAn alias of `simpson`.

    `simps` is kept for backwards compatibility. For new code, prefer
    `simpson` instead.
    )r   r   r   even)r   )r"   r   r   r   r   r#   r#   r$   r     s    r   c                 C  sf  t | } t| j}| j| }|}|}d}	|durt |}t|jdkr|dg| }
|jd |
|< |j}d}	|t|
}nt|jt| jkrtd|j| |krtd|durtjdt	dd |d dkr<d	}d	}t
df| }|dur|nd
}|dvrtd|dkrht||d}t||d}|durH|| ||  }|d| | | | |   7 }d}|d
kr0t| d|d |||}t||d}t||d}t||d}t ||g}|dur$t||t
ddd}t||t
ddd}t t j||d}t j|| |dt j|| |dg}d|d d  d|d  |d   }d|d |d   }t j||t ||dkd}|d d d|d  |d   }d|d  }t j||t ||dkd}d|d d  }d|d  |d |d   }t j||t ||dkd}||| |  || |   || |   7 }|dv rt||d}t||d}|durl|| ||  }|d| | | | |   7 }t| d|d |||}|dv rt||d}t||d}|dur|t| |t|  }|d| | | | |   7 }|t| d|d |||7 }|dkr2|d }|d }|| }nt| d|d |||}|	rb||}|S )a  
    Integrate y(x) using samples along the given axis and the composite
    Simpson's rule. If x is None, spacing of dx is assumed.

    If there are an even number of samples, N, then there are an odd
    number of intervals (N-1), but Simpson's rule requires an even number
    of intervals. The parameter 'even' controls how this is handled.

    Parameters
    ----------
    y : array_like
        Array to be integrated.
    x : array_like, optional
        If given, the points at which `y` is sampled.
    dx : float, optional
        Spacing of integration points along axis of `x`. Only used when
        `x` is None. Default is 1.
    axis : int, optional
        Axis along which to integrate. Default is the last axis.
    even : {None, 'simpson', 'avg', 'first', 'last'}, optional
        'avg' : Average two results:
            1) use the first N-2 intervals with
               a trapezoidal rule on the last interval and
            2) use the last
               N-2 intervals with a trapezoidal rule on the first interval.

        'first' : Use Simpson's rule for the first N-2 intervals with
                a trapezoidal rule on the last interval.

        'last' : Use Simpson's rule for the last N-2 intervals with a
               trapezoidal rule on the first interval.

        None : equivalent to 'simpson' (default)

        'simpson' : Use Simpson's rule for the first N-2 intervals with the
                  addition of a 3-point parabolic segment for the last
                  interval using equations outlined by Cartwright [1]_.
                  If the axis to be integrated over only has two points then
                  the integration falls back to a trapezoidal integration.

                  .. versionadded:: 1.11.0

        .. versionchanged:: 1.11.0
            The newly added 'simpson' option is now the default as it is more
            accurate in most situations.

        .. deprecated:: 1.11.0
            Parameter `even` is deprecated and will be removed in SciPy
            1.13.0. After this time the behaviour for an even number of
            points will follow that of `even='simpson'`.

    Returns
    -------
    float
        The estimated integral computed with the composite Simpson's rule.

    See Also
    --------
    quad : adaptive quadrature using QUADPACK
    romberg : adaptive Romberg quadrature
    quadrature : adaptive Gaussian quadrature
    fixed_quad : fixed-order Gaussian quadrature
    dblquad : double integrals
    tplquad : triple integrals
    romb : integrators for sampled data
    cumulative_trapezoid : cumulative integration for sampled data
    ode : ODE integrators
    odeint : ODE integrators

    Notes
    -----
    For an odd number of samples that are equally spaced the result is
    exact if the function is a polynomial of order 3 or less. If
    the samples are not equally spaced, then the result is exact only
    if the function is a polynomial of order 2 or less.

    References
    ----------
    .. [1] Cartwright, Kenneth V. Simpson's Rule Cumulative Integration with
           MS Excel and Irregularly-spaced Data. Journal of Mathematical
           Sciences and Mathematics Education. 12 (2): 1-9

    Examples
    --------
    >>> from scipy import integrate
    >>> import numpy as np
    >>> x = np.arange(0, 10)
    >>> y = np.arange(0, 10)

    >>> integrate.simpson(y, x)
    40.5

    >>> y = np.power(x, 3)
    >>> integrate.simpson(y, x)
    1640.5
    >>> integrate.quad(lambda x: x**3, 0, 9)[0]
    1640.25

    >>> integrate.simpson(y, x, even='first')
    1644.5

    r   Nr4   rd   re   zWThe 'even' keyword is deprecated as of SciPy 1.11.0 and will be removed in SciPy 1.13.0rq   
stacklevelg        r   )avglastfirstr   z>Parameter 'even' must be 'simpson', 'avg', 'last', or 'first'.r         ?   r6      ru   rs   )r   r   )r   r   r   r5   )r    rE   rF   ri   rh   rS   r9   rW   rX   DeprecationWarningrj   rb   r   Zasfarrayfloat64rg   Zsqueezery   rz   )r"   r   r   r   r   rm   NZlast_dxZfirst_dxZreturnshapeZshapexZ	saveshaper\   r   r~   rn   ro   Zslice3r   Zhm2Zhm1ZdiffsnumZdenalphabetaetar#   r#   r$   r     s    g









$ (






r   c              	   C  s  t | } t| j}| j| }|d }d}d}||k rH|dK }|d7 }q.||krXtdi }	tdf| }
t|
|d}t|
|d}|t j|td }| | | |  d | |	d< |
}| } }}td|d D ]}|dL }t||t|||}|dL }d	|	|d df || | j	|d
   |	|df< td|d D ]J}|	||d f }|||	|d |d f  dd| > d   |	||f< q4|d }q|r|t 
|	d std nz|d }W n ttfy   d}Y n0 z|d }W n ttfy   d}Y n0 d||f }d}t|dt| ddd t|d D ]8}t|d D ]}t||	||f  dd qBt  q2tdt|  |	||f S )a  
    Romberg integration using samples of a function.

    Parameters
    ----------
    y : array_like
        A vector of ``2**k + 1`` equally-spaced samples of a function.
    dx : float, optional
        The sample spacing. Default is 1.
    axis : int, optional
        The axis along which to integrate. Default is -1 (last axis).
    show : bool, optional
        When `y` is a single 1-D array, then if this argument is True
        print the table showing Richardson extrapolation from the
        samples. Default is False.

    Returns
    -------
    romb : ndarray
        The integrated result for `axis`.

    See Also
    --------
    quad : adaptive quadrature using QUADPACK
    romberg : adaptive Romberg quadrature
    quadrature : adaptive Gaussian quadrature
    fixed_quad : fixed-order Gaussian quadrature
    dblquad : double integrals
    tplquad : triple integrals
    simpson : integrators for sampled data
    cumulative_trapezoid : cumulative integration for sampled data
    ode : ODE integrators
    odeint : ODE integrators

    Examples
    --------
    >>> from scipy import integrate
    >>> import numpy as np
    >>> x = np.arange(10, 14.25, 0.25)
    >>> y = np.arange(3, 12)

    >>> integrate.romb(y)
    56.0

    >>> y = np.sin(np.power(x, 2.5))
    >>> integrate.romb(y)
    -0.742561336672229

    >>> integrate.romb(y, show=True)
    Richardson Extrapolation Table for Romberg Integration
    ======================================================
    -0.81576
     4.63862  6.45674
    -1.10581 -3.02062 -3.65245
    -2.57379 -3.06311 -3.06595 -3.05664
    -1.34093 -0.92997 -0.78776 -0.75160 -0.74256
    ======================================================
    -0.742561336672229  # may vary

    r4   r   z=Number of samples must be one plus a non-negative power of 2.Nr   rC   r5   )r   r   r   r6   rq   zE*** Printing table only supported for integrals of a single data set.r3      z%%%d.%dfz6Richardson Extrapolation Table for Romberg Integration=
)sepend r   )r    rE   rF   ri   r9   rj   rb   rx   rJ   r:   rD   print	TypeError
IndexError)r"   r   r   showrm   ZNsampsZNintervr2   kRr~   r   Zslicem1r   Zslice_Rr{   r|   r}   rL   jprevZpreciswidthZformstrtitler#   r#   r$   r     s`    =



08




r   c                 C  s   |dkrt dn||dkr6d| |d | |d   S |d }t|d |d  | }|d d|  }||t|  }tj| |dd}|S dS )aU  
    Perform part of the trapezoidal rule to integrate a function.
    Assume that we had called difftrap with all lower powers-of-2
    starting with 1. Calling difftrap only returns the summation
    of the new ordinates. It does _not_ multiply by the width
    of the trapezoids. This must be performed by the caller.
        'function' is the function to evaluate (must accept vector arguments).
        'interval' is a sequence with lower and upper limits
                   of integration.
        'numtraps' is the number of trapezoids to use (must be a
                   power-of-2).
    r   z#numtraps must be > 0 in difftrap().r4   r   rq   r6   N)r9   rx   r    aranger:   )functionintervalZnumtrapsZnumtosumr   ZloxZpointssr#   r#   r$   	_difftrap  s    
r   c                 C  s   d| }|| |  |d  S )z
    Compute the differences for the Romberg quadrature corrections.
    See Forman Acton's "Real Computing Made Real," p 143.
    rr   r   r#   )r<   cr   r   r#   r#   r$   _romberg_diff  s    r   c                 C  s   d }}t dt| dd t d| t d t dd  tt|D ]b}t d	d
| |d |d  d|  f dd t|d D ]}t d|| |  dd qt d qDt d t d|| | dd t dd
t|d  d d d S )Nr   zRomberg integration ofr   r   from z%6s %9s %9s)ZStepsZStepSizeZResultsz%6d %9frq   r4   r5   z%9fzThe final result isafterzfunction evaluations.)r   reprrJ   rF   )r   r   resmatrL   r   r#   r#   r$   _printresmat  s    
,
r   `sbO>
   c	              	   C  sL  t |st |rtdt| ||d}	d}
||g}|| }t|	||
}|| }|gg}t j}|d }td|d D ]}|
d9 }
|t|	||
7 }|| |
 g}t|D ]"}|t|| || |d  q|| }||d  }|r|| t	|| }||k s||t	| k r q6|}qvt
d||f t |rHt|	|| |S )a
  
    Romberg integration of a callable function or method.

    Returns the integral of `function` (a function of one variable)
    over the interval (`a`, `b`).

    If `show` is 1, the triangular array of the intermediate results
    will be printed. If `vec_func` is True (default is False), then
    `function` is assumed to support vector arguments.

    Parameters
    ----------
    function : callable
        Function to be integrated.
    a : float
        Lower limit of integration.
    b : float
        Upper limit of integration.

    Returns
    -------
    results : float
        Result of the integration.

    Other Parameters
    ----------------
    args : tuple, optional
        Extra arguments to pass to function. Each element of `args` will
        be passed as a single argument to `func`. Default is to pass no
        extra arguments.
    tol, rtol : float, optional
        The desired absolute and relative tolerances. Defaults are 1.48e-8.
    show : bool, optional
        Whether to print the results. Default is False.
    divmax : int, optional
        Maximum order of extrapolation. Default is 10.
    vec_func : bool, optional
        Whether `func` handles arrays as arguments (i.e., whether it is a
        "vector" function). Default is False.

    See Also
    --------
    fixed_quad : Fixed-order Gaussian quadrature.
    quad : Adaptive quadrature using QUADPACK.
    dblquad : Double integrals.
    tplquad : Triple integrals.
    romb : Integrators for sampled data.
    simpson : Integrators for sampled data.
    cumulative_trapezoid : Cumulative integration for sampled data.
    ode : ODE integrator.
    odeint : ODE integrator.

    References
    ----------
    .. [1] 'Romberg's method' https://en.wikipedia.org/wiki/Romberg%27s_method

    Examples
    --------
    Integrate a gaussian from 0 to 1 and compare to the error function.

    >>> from scipy import integrate
    >>> from scipy.special import erf
    >>> import numpy as np
    >>> gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)
    >>> result = integrate.romberg(gaussian, 0, 1, show=True)
    Romberg integration of <function vfunc at ...> from [0, 1]

    ::

       Steps  StepSize  Results
           1  1.000000  0.385872
           2  0.500000  0.412631  0.421551
           4  0.250000  0.419184  0.421368  0.421356
           8  0.125000  0.420810  0.421352  0.421350  0.421350
          16  0.062500  0.421215  0.421350  0.421350  0.421350  0.421350
          32  0.031250  0.421317  0.421350  0.421350  0.421350  0.421350  0.421350

    The final result is 0.421350396475 after 33 function evaluations.

    >>> print("%g %g" % (2*result, erf(1)))
    0.842701 0.842701

    z5Romberg integration only available for finite limits.rQ   r4   r   rq   z,divmax (%d) exceeded. Latest difference = %e)r    r8   r9   rN   r   rT   rJ   appendr   rV   rW   rX   r   r   )r   r;   r<   r=   rY   rZ   r   ZdivmaxrM   rA   r2   r   ZintrangeZordsumr   r   r]   Zlast_rowrL   rowr   Z
lastresultr#   r#   r$   r     s@    U 

r   rq      r   )r4      r4   Z   r   )r4   r   r   r4   r   P   -   )       r   r   r   ii  i   )   K   rP   rP   r   r   ii@/     ))         i  r   r   r   iix  r   iC  )    +    r   r   r   r   i	i  r   i_7  )	     ` )  iDr   r   r   r   ii?# 	   i ^ )
)  }=  8  K    r   r   r   r   r   ii  ip )>  < sB( :ih r   r   r   r   r   iii0	   i 0)I"!  jmi r   r   r   r   r   r   l&	 l    7 iR0P ) @ 7@!!Nd7ipRr   r   r   r   r   r   i<ic]    l    `5]v)   v[O    =H/54 +w    "- Mp:    {> $MY( r   r   r   r   r   r   r   l`: l    @	Al   @d@* )i`p`*o   Fg! f    \a LR l   @` r   r   r   r   r   r   r   lx= l   7-)r4   rq   r   r   r3   r   r   r   r   r   r   r   r      c                 C  s  z<t | d }|r"t|d } ntt| dkr:d}W n( tyd   | }t|d } d}Y n0 |r|tv rt| \}}}}}|tj|td | }|t|| fS | d dks| d |krt	d| t| }	d|	 d }
t|d }|
|ddtj
f  }tj|}tdD ]}d| ||| }qd|ddd d  }|dddddf ||d  }|d dkr|r||d	  }|d }n||d  }|d }|t|	| | }|d }|t| t| }t|}||| fS )
a  
    Return weights and error coefficient for Newton-Cotes integration.

    Suppose we have (N+1) samples of f at the positions
    x_0, x_1, ..., x_N. Then an N-point Newton-Cotes formula for the
    integral between x_0 and x_N is:

    :math:`\int_{x_0}^{x_N} f(x)dx = \Delta x \sum_{i=0}^{N} a_i f(x_i)
    + B_N (\Delta x)^{N+2} f^{N+1} (\xi)`

    where :math:`\xi \in [x_0,x_N]`
    and :math:`\Delta x = \frac{x_N-x_0}{N}` is the average samples spacing.

    If the samples are equally-spaced and N is even, then the error
    term is :math:`B_N (\Delta x)^{N+3} f^{N+2}(\xi)`.

    Parameters
    ----------
    rn : int
        The integer order for equally-spaced data or the relative positions of
        the samples with the first sample at 0 and the last at N, where N+1 is
        the length of `rn`. N is the order of the Newton-Cotes integration.
    equal : int, optional
        Set to 1 to enforce equally spaced data.

    Returns
    -------
    an : ndarray
        1-D array of weights to apply to the function at the provided sample
        positions.
    B : float
        Error coefficient.

    Notes
    -----
    Normally, the Newton-Cotes rules are used on smaller integration
    regions and a composite rule is used to return the total integral.

    Examples
    --------
    Compute the integral of sin(x) in [0, :math:`\pi`]:

    >>> from scipy.integrate import newton_cotes
    >>> import numpy as np
    >>> def f(x):
    ...     return np.sin(x)
    >>> a = 0
    >>> b = np.pi
    >>> exact = 2
    >>> for N in [2, 4, 6, 8, 10]:
    ...     x = np.linspace(a, b, N + 1)
    ...     an, B = newton_cotes(N, 1)
    ...     dx = (b - a) / N
    ...     quad = dx * np.sum(an * f(x))
    ...     error = abs(quad - exact)
    ...     print('{:2d}  {:10.9f}  {:.5e}'.format(N, quad, error))
    ...
     2   2.094395102   9.43951e-02
     4   1.998570732   1.42927e-03
     6   2.000017814   1.78136e-05
     8   1.999999835   1.64725e-07
    10   2.000000001   1.14677e-09

    r4   rC   r   r   z1The sample positions must start at 0 and end at Nrq   Nr5   rs   )rF   r    r   allrg   	Exception_builtincoeffsarrayrx   r9   ZnewaxisZlinalginvrJ   dotmathlogr	   exp)Zrnequalr   nadavinbdbZanyiZtiZnvecCZCinvrL   ZvecZaiBNpowerp1Zfacr#   r#   r$   r   x  sF    A
$

r   c              
     s  t tdsddlm} |t_ntj}t s8d}t|t| }t| }t	||\}}|j
d }	z || d  W n2 ty }
 zd}t||
W Y d }
~
n
d }
~
0 0 z t||gj  }W nL ty }
 z2d|
 d}tj|d	d
  fdd}W Y d }
~
n
d }
~
0 0 t|}||kr@d}t|t|}||kr`d}t||d u rx|j|	}nt||jjsd}t||j|j
d krd}t|t|dd }|j|}|dvrd}t||||||||||f	S )Nqmcr   )statsz`func` must be callable.rq   z`func` must evaluate the integrand at points within the integration range; e.g. `func( (a + b) / 2)` must return the integrand at the centroid of the integration volume.zAException encountered when attempting vectorized call to `func`: z. For better performance, `func` should accept two-dimensional array `x` with shape `(len(a), n_points)` and return an array of the integrand value at each of the `n_points.r   r   c                   s   t j d| dS )Nr   )r   Zarr)r    Zapply_along_axisr?   r/   r#   r$   rA     s    z_qmc_quad_iv.<locals>.vfuncz`n_points` must be an integer.z!`n_estimates` must be an integer.z8`qrng` must be an instance of scipy.stats.qmc.QMCEngine.z`qrng` must be initialized with dimensionality equal to the number of variables in `a`, i.e., `qrng.random().shape[-1]` must equal `a.shape[0]`.rng_seed>   FTz*`log` must be boolean (`True` or `False`).)r   r   Zscipyr  callabler   r    Z
atleast_1drt   broadcast_arraysri   r   r9   r   TrW   rX   int64r
  ZHaltonrR   Z	QMCEnginerl   rG   Z_qmcZcheck_random_state)r,   r;   r<   n_pointsn_estimatesqrngr   r  messageZdimerA   Zn_points_intZn_estimates_intr  rngr#   r/   r$   _qmc_quad_iv  s^    

 "





r  QMCQuadResultintegralstandard_errori   )r  r  r  r   c             	     s  t | |||||}|\	} }}}}}}}	ddd}
dfdd	 d fdd		d fd
d	}t||krd}tj|dd t|rtj nddS ||k }d|jdd }|| ||  ||< ||< t|| }|| }t	}t
|j}tD ]V}||}|	j|||j}| |}|
|||||< t|f d|| i|j}q  ||}||||d}|r|dk r|tjd  n|| }t||S )a  
    Compute an integral in N-dimensions using Quasi-Monte Carlo quadrature.

    Parameters
    ----------
    func : callable
        The integrand. Must accept a single argument ``x``, an array which
        specifies the point(s) at which to evaluate the scalar-valued
        integrand, and return the value(s) of the integrand.
        For efficiency, the function should be vectorized to accept an array of
        shape ``(d, n_points)``, where ``d`` is the number of variables (i.e.
        the dimensionality of the function domain) and `n_points` is the number
        of quadrature points, and return an array of shape ``(n_points,)``,
        the integrand at each quadrature point.
    a, b : array-like
        One-dimensional arrays specifying the lower and upper integration
        limits, respectively, of each of the ``d`` variables.
    n_estimates, n_points : int, optional
        `n_estimates` (default: 8) statistically independent QMC samples, each
        of `n_points` (default: 1024) points, will be generated by `qrng`.
        The total number of points at which the integrand `func` will be
        evaluated is ``n_points * n_estimates``. See Notes for details.
    qrng : `~scipy.stats.qmc.QMCEngine`, optional
        An instance of the QMCEngine from which to sample QMC points.
        The QMCEngine must be initialized to a number of dimensions ``d``
        corresponding with the number of variables ``x1, ..., xd`` passed to
        `func`.
        The provided QMCEngine is used to produce the first integral estimate.
        If `n_estimates` is greater than one, additional QMCEngines are
        spawned from the first (with scrambling enabled, if it is an option.)
        If a QMCEngine is not provided, the default `scipy.stats.qmc.Halton`
        will be initialized with the number of dimensions determine from
        the length of `a`.
    log : boolean, default: False
        When set to True, `func` returns the log of the integrand, and
        the result object contains the log of the integral.

    Returns
    -------
    result : object
        A result object with attributes:

        integral : float
            The estimate of the integral.
        standard_error :
            The error estimate. See Notes for interpretation.

    Notes
    -----
    Values of the integrand at each of the `n_points` points of a QMC sample
    are used to produce an estimate of the integral. This estimate is drawn
    from a population of possible estimates of the integral, the value of
    which we obtain depends on the particular points at which the integral
    was evaluated. We perform this process `n_estimates` times, each time
    evaluating the integrand at different scrambled QMC points, effectively
    drawing i.i.d. random samples from the population of integral estimates.
    The sample mean :math:`m` of these integral estimates is an
    unbiased estimator of the true value of the integral, and the standard
    error of the mean :math:`s` of these estimates may be used to generate
    confidence intervals using the t distribution with ``n_estimates - 1``
    degrees of freedom. Perhaps counter-intuitively, increasing `n_points`
    while keeping the total number of function evaluation points
    ``n_points * n_estimates`` fixed tends to reduce the actual error, whereas
    increasing `n_estimates` tends to decrease the error estimate.

    Examples
    --------
    QMC quadrature is particularly useful for computing integrals in higher
    dimensions. An example integrand is the probability density function
    of a multivariate normal distribution.

    >>> import numpy as np
    >>> from scipy import stats
    >>> dim = 8
    >>> mean = np.zeros(dim)
    >>> cov = np.eye(dim)
    >>> def func(x):
    ...     # `multivariate_normal` expects the _last_ axis to correspond with
    ...     # the dimensionality of the space, so `x` must be transposed
    ...     return stats.multivariate_normal.pdf(x.T, mean, cov)

    To compute the integral over the unit hypercube:

    >>> from scipy.integrate import qmc_quad
    >>> a = np.zeros(dim)
    >>> b = np.ones(dim)
    >>> rng = np.random.default_rng()
    >>> qrng = stats.qmc.Halton(d=dim, seed=rng)
    >>> n_estimates = 8
    >>> res = qmc_quad(func, a, b, n_estimates=n_estimates, qrng=qrng)
    >>> res.integral, res.standard_error
    (0.00018429555666024108, 1.0389431116001344e-07)

    A two-sided, 99% confidence interval for the integral may be estimated
    as:

    >>> t = stats.t(df=n_estimates-1, loc=res.integral,
    ...             scale=res.standard_error)
    >>> t.interval(0.99)
    (0.0001839319802536469, 0.00018465913306683527)

    Indeed, the value reported by `scipy.stats.multivariate_normal` is
    within this range.

    >>> stats.multivariate_normal.cdf(b, mean, cov, lower_limit=a)
    0.00018430867675187443

    Fc                 S  s(   |rt | t| S t| | S d S r.   )r
   r    r   r:   )
integrandsdAr   r#   r#   r$   sum_product  s    zqmc_quad.<locals>.sum_productc                   s$   |rt | t  S t| S d S r.   )r
   r    r   mean)	estimatesr   )r  r#   r$   r    s    zqmc_quad.<locals>.meanNr   c                   s|   |p | |}|rjt | |\} }t | |t jd  f}t|dd}t dtd| t |   S t j| |dS d S )N              ?r   r6   r   rq   )ddof)r    r  Zvstackpir
   r7   r   std)r  mr!  r   temprg   )r  r  r#   r$   r#    s    zqmc_quad.<locals>.stdc                   sJ   |p | |}|p | |d|d}|r8|dt   S |t  S d S )Nr4   )r!  r   r   )r    r   sqrt)r  r$  r   r   r  r  r#  r#   r$   sem  s
    zqmc_quad.<locals>.semz^A lower limit was equal to an upper limit, so the value of the integral is zero by definition.rq   r   r   r6   seed)r$  r   r   )F)F)Nr   F)NNF)r  r    anyrW   rX   r  rT   r:   prodzerosr   r  rJ   randomr
  Zscaler  rH   Z
_init_quadr"  )r,   r;   r<   r  r  r  r   r=   r  r  r  r(  r  Zi_swapsignAr  r  ZrngsrL   sampler   r  r  r  r#   r'  r$   r   2  s6    n


 
&r   )Nr   r   )Nr   r   )r#   r3   )r#   F)r#   rO   rO   rP   Tr4   )Nr   r   N)Nr   r   N)Nr   r   N)Nr   r   N)r   r   F)r#   r   r   Fr   F)r   )1
__future__r   typingr   r   r   r   numpyr    r   rW   collectionsr   Zscipy.specialr   r	   r
   Zscipy._lib._utilr   __all__r   r   Warningr   r(   r)   r0   r1   dictr*   r   rN   r   rb   r   r   r   r   r   r   r   r   r   r   r   r   r  r  r   r#   r#   r#   r$   <module>   s   
p
	

G
-  
U
	
]'
	
 x
 	  
 






#
mJ